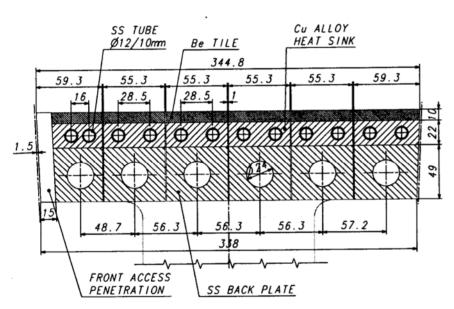


ITER PFC Research Needs

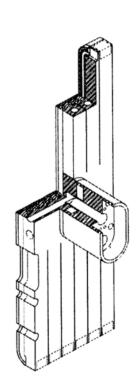
(Including those beyond US contribution)

December 7, 2004

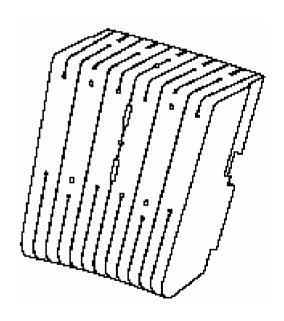
M. Ulrickson
Presented at PFC Technology Meeting
Livermore, CA



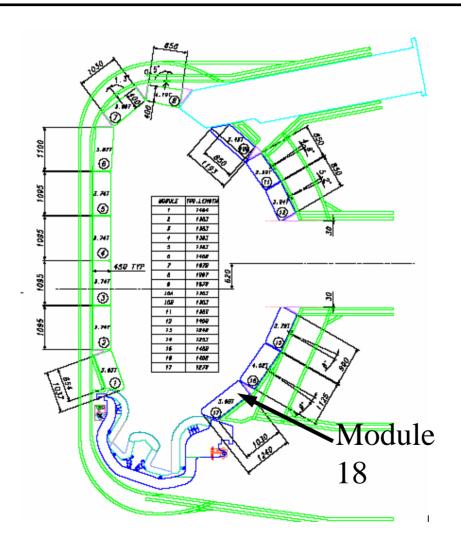
Outline


- First Wall Shield Module 18
 - Be joining to Cu alloy
 - Cu alloy joining to 316 stainless steel
 - Fabrication of large water cooled 316 components
 - Control of eddy currents in FW/S structures
- Other research issues
 - Understanding and control of Tritium retention
 - Erosion of the first wall
 - Understanding the effect of ELMs on PFCs
 - Preparation for Test Blanket Module

ITER FW Design


Plasma Sprayed FW Mockup

ITER Shield Module Design



Generic Module Design

Old Module 18 Concept

ITER First Wall Design

Summary of FW/S Issues

- The FW design requires Be joined to Cu in a very tight space (high heat flux capable)
- Cu alloy must the joined to 316 without ruining the properties of the Cu alloy (EDA solved?)
- Complicated 316 structures must be fabricated inexpensively

Other Issues

- The mechanisms of carbon erosion, transport and deposition are not well understood (even ignoring mixed materials)
- Removal of T from C deposits can probably be done from exposed surfaces (not hidden ones)
- The role of "blob" transport in first wall erosion is just beginning to be studied.
- Transport of eroded material is poorly understood (everything goes to the inner divertor in single null?)
- Erosion generates dust (possible impurity source)
- Mixed materials complicate (and may alleviate) many issues

Other Issues

- ELMs are high cycle fatigue and erosion issues and there is no data at large numbers of cycles
- The proper operating temperature is crucial
- Fatigue at less than melting energy deposition may enhance erosion

